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EFFECTS OF TIME STEP SIZE IN IMPLICIT DYNAMIC ROUTING'

D. L. Fread?®

ABSTRACT. The effects of the size of the At time step used in the integration of the lmpllcl!
difference equati of unsteady open-ch I low are d ined for typical hyd

with durations in the order of days or even weeks. Truncation errors related to the size of the At time
stcp causc a numerical distortion (dispersion and attenuation) of the computed transient. The
magnitude of the distortion is related directly to the size of the time step, the length of channel reach,
and the channel resistance and inversely to the time of rise of the hydrograph. The type of finite
difference expression which replaces spatial derivatives and non-derivative terms in the partial
differential equations of unsteady flow has an important influence on the magnitude of the numericat
distortion, as well as the numerical stability of the implicit diffy Time step sizes in the

P q

range of 3 to 6 hrs generally tend to minimize the bination of required computation time and
numerical distortion of transients having a time of rise of the order of several days.
KEY TERMS: open-channel flow, unsteady flow equations, finite differences, implicit method,

truncation crrors)

INTRODUCTION

Unsteady or transient flow in open channels such as rivers, canals, reservoirs, etc., may be
simulated by a mathematical model based on the complete one-dimensional unsteady flow
equations which conserve the mass and the momentum of the flow. Analytical solutions to
these nonlinear partial differential equations do not exist. However, they may be solved by
numerical techniques which use algebraic finite difference equations to approximate the partial
differential equations. It is essential to utilize a digital computer to perform the numerous
computations required by this solution technique.

Numerous finite difference techniques for numerically integrating the unsteady flow
equations have been reported in the literature. They may be categorized into the following four
methods of solution:

L. Implicit method [Abbott and lonescu, 1967; Lai, 1967; Baltzer and Lai, 1968; Amein,
1968; Dronkers, 1969; Amein and Fang, 1970; Strelkoff, 1970; Kamphuis, 1970;
Gunaratnam and Perkins, 1970; Contractor and Wiggert, 1971; Fread, 1972];

2. Explicit method [lsaacson, Stoker and Troesch, 1956; Stoker, 1957; Liggett and
Woolhiser, 1967; Dronkers, 1969: Garrison, Granju and Price, 1969; Strelkoff, 1970;
Strelkoff and Terzidis, 1970] ;

! Paper No. 73020 of the Water Resources Bulletin. Discussions are open until November 1, 1973,
2 Research Hydrologist, Office of Hydrology, National Weather Service, NOAA, Silver Spring, Md. 20910
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3. Characteristic method with curvilinear net [Lister, 1960; Amein, 1966; Streeter and
Wylie, 1967; Liggett and Woolhiser, 1967; Wylie, 1969; Fread and Harbaugh, 1972] ; and
4. Characteristic method with rectangular net [Lister, 1960: Streeter and Wylie, 1967;
Baltzer and Lai, 1968; Mozayeny and Song, 1969; Wylie, 1970; Yevjevich and Barnes,

1 1970].

Of the four methods, the implicit method appears to be best suited for modeling transient
flows with durations in the order of days or weeks such as the natural floods occurring in large
river systems. The implicit method, unlike the other methods, theoretically does not restrict the
size of time step because of the numerical stability characteristics of the finite difference
equations. Large time steps can enable the implicit method to be more computationally
efficient than the other methods, particularly for long duration transients.

The aim of this paper is to investigate the effect of large time steps on the accuracy of
solutions obtained from the unsteady flow equations by the implicit finite difference technique
for transient flows of durations in the order of days and weeks.

UNSTEADY FLOW EQUATIONS

The unsteady flow equations, the equation of continuity (conservation of mass) and the
equation of motion (conservation of momentum), can be respectively expressed in the
divergence form as:
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in which the resistance slope, Sf, is given by the Manning equation, i.e.,
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P

The terms in the above equations are defined as: x = longitudinal distance along the channel,
positive in the downstream direction; ¢ = time; A = cross-sectional area of flow; V = mean
velocity of flow across a section, positive in the downstream direction; h = water surface
elevation; ¢ = known lateral inflow or outflow per unit length along the channel, positive if
inflow; vy = velocity of lateral flow in the direction of the channel flow; S,= resistance slope;
n = Manning roughness coefficient; P = wetted perimeter of the flow cross section; and g =
acceleration of gravity.

A derivation of the equations may be found in several references, e.g., Stoker [1957}, Chow
[1959] and Strelkoff [1969]. It is assumed in the derivation that the flow is one-dimensional
in the sense that flow characteristics such as depth and velocity are considered to vary only in
the longitudinal x-direction of the channel. It is further assumed that: 1) the velocity is
constant and the water surface is horizontal across any section perpendicular to the longitudinal
axis; 2) the flow is gradually varied with hydrostatic pressure prevailing at all points in the flow
such that the vertical acceleration of water particles may be neglected; 3) the longitudinal axis

of the channel can be approximated by a straight line; 4) the bottom slope of the channel is
small; 5) the bed of the channel is fixed, i.e., no scouring or deposition is assumed to occur; 6)
the resistance coefficient for steady uniform turbulent flow is considered applicable, and an
empirical resistance equation such as the Manning equation describes the resistance effects; and
7) the flow is incompressible and homogeneous in density.

Equation I and 2 make up a system of two nonlinear, first order, first degree partial
differential equations of the hyperbolic type. They have x and ¢ as independent variables and A
and V as dependent variables. The other terms are constants or are functions of independent
and/or dependent variables, i.e., A (x, h), Sj {x,h, V) q(x, 1) Vlx,t)n{x h)and P(x, h).

In order to obtain solutions to the unsteady flow equations, it is necessary to specify
boundary and initial conditions. Boundary conditions are conditions specified at fixed values of
x for various time. These values include discharge or water surface elevation versus time, or a
stage-discharge relation for the upstream and downstream extremities of the channel reach.
Initial conditions are conditions specified at fixed values of time at various spatial locations. An
initial flow profite for the channel reach may be determined from a backwater computation
[Fread and Harbaugh, 1971} and used as an initial condition. Besides boundary and initial
conditions, lateral flows, channel geometry and resistance coefficients must be prescribed a
priori.

IMPLICIT FINITE DIFFERENCE SOLUTION

Equations I and 2 may be approximated by algebraic finite difference equations; and the
continuous x- region” in which solutions of h and ¥ are desired can be represented by a
rectangular net of discrete points. The net points are defined by the intersection of straight
lines drawn parallel to the axes of the x-t region. Lines parallel to the x-axis are time lines and
have a spacing of At which need not be constant. Lines parallel to the r-axis represent locations
along the channel and have a spacing of Ax which need not be constant. Each discrete point
may be identified by a double subscript (i, jJ; the first designates the x-position and the second
designates the time line.

In the implicit finite difference solution, the time derivatives are approximated by a forward
difference quotient centered between the it and i + 1 points, i.e.,
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where A represents any function or variable. The spatial derivatives are approximated by a
lorward difference quotient positioned between two adjacent time lines according to weighting
factorsof @ annd (149), ie..
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Functions other than derivatives are approximated by using weighting factors similar to
Equation 5. Thus,
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Upon substituting the finite difference operators defined by Equations 4, 5, and 6 into the
unsteady flow Equations I and 2, the following implicit difference equations are obtained:
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A weighting factor of 0 = 1 yiclds the fully implicit scheme used by Baltzer and Lai [1968] .
A weighting factor of 8 = 1/2 produces the “box” scheme used by Amein [1968], Amein and
Fang [1970] , and Contractor and Wiggert [1971].

Equations 7 and 8 form a system of two algebraic equations which are nonlinear with
respect to the unknowns, the values of h and V at the net points (i, j+1)and (i + 1. j+ 1). The
terms A and S are known functions of & and/or V. The terms associated with the net points (i,
j)and (i + 1, jJare known from either the initial conditions or previous computations.

The two equations cannot be solved for the unknowns since there are two more unknowns
than equations; however, by considering all N number of points along the x-axis simultan-
eously, a solution may be obtained. In this way, a total of {2V - 2) equations with 2NV

unknowns may be formulated by applying Equations 7 and 8 recursively to the (N - 1)
rectangular grids along the x-axis. The boundary conditions at the upstream and downstream
extremities of the channel reach provide two additional equations which are necessary for the
system of equations to be sufficiently proposed to yield a solution. The resulting system of 2N
nonlinear equations with 2V unknowns must be solved by an iterative procedure. A functional
iterative process, called Newton-Raphson Iteration [Crandall, 1956; Amein and Fang, 1970} , is
used to solve the nonlinear system. The iterative process converges to a solution of acceptable
accuracy at a quadratic rate; this may be improved by using parabolic extrapolation to obtain
the first approximation of the solution from solutions determined at previous times. The
coefficient matrix of the linearized system of equations has a banded structure which lends
itself to very efficient solution algorithms, c.g., [Fread, 1970] .

STABILITY OF THE IMPLICIT EQUATIONS

The solution of a system of finite difference equations requires that numerical errors of
round-off, introduced in the computational procedure, not be amplified into an unlimited
error. The stability of the nonlinear difference Equations 7 and 8 can be investigated by a
Fourier analysis of the error propagation properties of linearized forms of the difference
cquations. This stability analysis, known as the von Neumann method [O’Brien, Hyman, and
Kaplan, 1951] has been used by various investigators, e.g. Abbott and lonescu [1967] and
Leenderise [1967], to show that, in general, an implicit finite difference formulation of the
unsteady flow equations is unconditionally stable for any ratio of A x/ A t when the 8
weighting factor is restricted to the range, 1/2 <8 < . Thus, according to this stability
analysis, the stability of the implicit method does not depend on the ratio, Ax/ A ¢, as do the
explicit and characteristic methods. However, the inability to include in the stability analysis
the nonlinearities of Equations 7 and 8, as well as the effects of boundary conditions, causes
the von Neumann technique to be heurisitic and somewhat inconclusive. Under certain
conditions, the implicit difference equations have been observed to exhibit instabilities [Liggett
and Woolhiser, 1967; Baltzer and Lai, 1972] . In this investigation, numerical instabilities were
encountered for certain upstream boundary hydrographs and A ¢ time steps; this will be
discussed later

ACCURACY OF THE IMPLICIT EQUATIONS

Solutions obtained from the implicit difference Equations 7 and 8 have been mathematically
shown to converge to the true solutions of the partial differential Equations 1 and 2 as A x and
A t approach zero [Abbott and lonescu, 1967 and Leendertse, 1967)] . Thus, if channel length
and the irregularity of channel geometry are used to select A x, the accuracy of the implicit
difference solution decreases as the size of the time step increases.

Truncation errors, related to the magnitude of the time step, arise during the integration of
the implicit difference equations. The truncation errors distort the solution via numerical
dispersion and attenuation of the computed transient. Henceforth, the truncation error in the
solution will be referred to as “numerical distortion.” Also, as will be shown later, the
characteristics of the discharge hydrograph at the upstream extremity of the channel reach have
a significant effect on the accuracy of the solution.

The characteristics of the numerical distortion are investigated herein via numerical
experiments in which Equations 7 and 8 are applied to up boundary transients described
by the following four-parameter, Pearson Type I11 distribution:
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The terms in the above equations are defined as follows: Q (¢) = discharge at any time (1), Q =
initial steady discharge as computed by the Manning equation, @ ,, , . = maximum discharge at
the upstream boundary during the transient flow condition, 7 = time of occurrence of @ .,
Tg = tlime associated with the center of gravity of the upstream hydrograph, p = hydrograph
amplification coefficient, and y = a skewness coefficient of the upstream hydrograph.

The downstreamn boundary condition is specified by the following implicit stage-velocity
relationship which is corrected for transient effects:

y =148 (;4)2/3sf 112 (12
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This boundary condition allows the transient to pass the downstream extremity of the channel
reach with no numerical reflection.

The primary objective of this investigation is to study the effect of the size of the time step
on the solutions of the implicit difference equations. Therefore, selected parameters describing
the physical characteristics of the channel reach are held constant throughout the study except
in special instances where a single parameter is'penurbed in order to determine its effect on the
results. The selected channel parameters are as follows: channel reach length (L) = 100 miles:
channel bottom slope (S,,) = 1/5280 ft per ft; Manning roughness coefficient () = 0.03: wide
rectangular cross-section with surface width (B) = 2000 ft; number (V) of A x sub-reaches = 10,
and intial depth of flow (¥ ) 5 ft. Convergeme cmena for h and Vin the ner;mve solution
were chosen as: | h | < 1x10° andl vk Vkl <1 x 100, where the
superscript k denotes the number of iterations.

The effect of the magnitude of the time step on the accuracy of the computed solutions is
determined by systematically increasing the time step from 4 ¢, a relatively small value in the
order of minutes, to a relatively large value of 12 hours. The A £, time step is the maximum size
time step that can be used in an explicit method; it is computed from the Courant condition
|Stoker, 1957; Strelkoff, 1970} which insures numerical stability when friction effects are
relatively small:

Atg _<_Ax,-//| Vil +(gA/B); 1/2] . (minimum fori=1. . . N) (a4

The stage hydrographs obtained using A 1. in Equations 7 and 8 are considered the standards

to which the solutions computed with A ¢ time steps of 1, 3, 6 and 12 hours are compared.

This follows the approach used by Abbott and lonescu [1967] for testing the effect of the
magnitude of At in direct finite difference approximations of the unsteady flow equations. The
fact that the truncation error is a minimum when the time step isA ¢, follows from a Taylor
serics analysis of Equations 7 and 8, as well as from the fact that as A ¢ increases beyond Az,
the response properties of the computational system depart from those of the physical system.

Deviations from the standard hydrographs are measured by the following relative root mean
square error (S, and relative error of the peak {P,) of the hydrographs:

5, = 1001} E (v;-vs) % 112

(15)
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in which n# = total number of hydrograph values being compared, »;= stage value computed
with a particular At time step, ; vs; = stage value computed with a A 7, time step, yp= maxitmum
(peak) value of v;, and ys = maxlmum value of ys;.

Figures | and 2 illustrate typical numerical dlstomons of the computed dyrographs at the
downstream boundary for two variations in the upstream boundary condition. In Figure 1, the
time of risc (7) is 48 hours, while in Figure 2, 7 is 120 hours. The hydrographs obtained with a
time step of 12 hours differ from those computed with a time step of 0.5 hour. The rising limb
of the former occurs earlier than the latter, while the falling limb is delayed and the peak is
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Figure 1. Distortion of computed downstream stage hydrograph
for large At steps when 8 is varied and T = 48 hours.
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Figure 3. Effect of 6 and 7 on the distortion of the computed stage
hydrograph at the downstream boundary for various
At time steps having p = 20 and 7= 1.2.

attenuated. The distortion is more pronounced in Figure 1 than in Figure 2 for the same values
of A1 and 0. Also, for a single 7 value, the distortion is significantly greater for @ = | than for @
=0.55.

A quantitiative evaluation of the numerical distortion, in terms of S, and P,. is shown in
Figure 3. The influence of 6 and 7 on the degree of distortion is significant. This was also
observed for other test hydrographs. Thus, it may be concluded that the lower range of
allowable 0 values minimizes the distortion (dispersion and attenuation) which results from the
usc of large time steps in the integration of the implicit difference equations. Also, the degree
of distortion becomes less as the time of rise of the input hydrograph increases. Several
correlations of S, with the size of the A t time step are shown in Figure 4. The correlations are
given for various 7 and p values of the upstream boundary hydrograph. The S, error is
associated with the stage hydrographs computed at the downstream boundary of the 100 mile
channel reach described previously.

An examination of Figure 4 yields the following information concerning the numerical
distortion resulting from the use of A ¢ time steps considerably larger than those determined
from the Courant Condition (Equation 14):

1) The magnitude c;.« increases with the size of the A ¢ time step;

2) As 7, the time of rise of the upstream hydrograph increases, the stopes of the (S,, A r)

curves decrease;

3) The magnitude of .wm is less than 1% for 72> 96 hoursand At <12 hours.

The solid curves in Figure 4 are applicable for a 8 of 0.55, a value chosen so as to minimize
numerical distortion while conservatively insuring theoretical stability of the computations. The
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Se (%)

' 3 [ r”
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Figure 4. Correlation of S, error (for the stage at the downstream boundary)
with the At time step for various upstream boundary hydrographs having y= 1.2,




dashed portion of the curves are applicable to 8 values greater than 0.55 which are required tor
numerical stability since lesser values of @ cause instabilities to arise in the iterative solution of
the nonlinear difference equations. The sclected 0 values are optimal in that the magnitude of
numerical distortion is minimized while numerical stability is achieved. The optimal 8 values
vary with A ¢ and 7. An illustration of the variation with A ¢ and 7 is given in Figure 5 for a p of
20. By inspecting Figures 4 and 5, it can be scen that the tendency for stable numerical
computations decreases with increasing values of A r and with decreasing values of 8 and 7.
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] 12 24 36 48 60 72 84

T (hrs)

Figure 5. Optimat @ for numerical stability and minimum distortion
for various 7, At,and p = 20,7 = 1.2,

The effect of the At time step size on the attenuation of the computed stage hydrographs at
the downstream boundary is presented in Figure 6 for various combinations for 7 and p. In
Figure 6, P, is negligible for 7 values greater than 48 hours; however, P, can be significant for A
£ > 3 hour when 7 <48 hours.

The results presented thus far are applicable for the constant channel parameters selected
previously. In order to determine if the numerical distortion resulting from large time steps is
sensitive to the values of the channel parameters, these are perturbed and the resulting effects
on S, and P, are observed. The observed effects may be summarized by the following
approximation:

(S wPo) ~n(S,P,) ' an

in which the prime superscript denotes the magnitude of S, or P, associated with any channel
parameter (¥ ') having a different value than the constant value of the corresponding
parameter () for which Figures 4 and 6 are applicable. The correction factor 7, is presented in
Figure 7 for the various channel parameters in terms of the ratio, ¥ { . It can be observed
from Figure 7 that the numerical distortion increases when either the channel length, L, or the
Manning roughness factor, n, increase; and decreases when either the magnitude of the initial
depth of flow, Y, or the channel bottom slope, S, increase. The channel width, B, was
observed to have little or no effect on the magnitude of the numerical distortion. The
magnitude of the numerical distortion increases with the distance from the upstream boundary

to the channel location in question.
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Figure 6. Correlation of Pp error (for the stage at the downstream boundary) with

the At time step for various upstream boundary hydrographs having y = 1.2,
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Figure 7. Correction factor, 0, for determining the eftect of
various channel parameters on the numerical distortion (S,, Pe/.




The effects of the channel parameters on the magnitude of the numerical distortion of
transients with 7 values less than 96 hours were more difficull to sunnarize as they did not
appear to follow a general pattern and. as a result, are not presented herein.

Although only stage hydrographs have been used to illustrate the characteristics of the
numerical distortion produced by large A ¢ time steps, computed discharge hydrographs were
subject to numerical distortion of the same order of magnitude.

COMPUTATION TIME

The required computation time on a CDC 6600 computer is shown in Figure 8 for various A
t time steps and two upstream boundary transients. Although the computation times presented
in Figure 8 are applicable for 10 A x sub-reaches, computation times for other N values may be
readily determined since the required computation time is directly proportional to N.

It is apparent from Figure 8, that the required computation time is reduced considerably as
A ¢t increases from 0.5 hour to approximately 6 hours and then decreases very little as A ¢
approaches 12 hours. Since the magnitude of the distortion increases as A ¢ increases (refer to
Figures 4 and 6), A 1 time steps in the range of 3 to 6 hours will minimize both the
computation time and the numerical distortion.
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NeI0 (ax sub-recches )
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T2 48 s {10~ doy duretion)
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Figure 8. Effect of At and 7 on required computer time (CDC 6600)
for the duration of the transicnt.

SUMMARY AND CONCLUSIONS

The effects of large time steps in the integration of the implicit finite difference equations of
unsteady flow have been investigated for typical single-peak transients at the upstream
boundary. The influence of a range of channel parameters has been included in the analysis.
The conclusions resulting from the investigation are summarized as follows:

1) Numerical distortion, in the form of dispersion and attenuation of the computed

transient, increases as the size of the Az time step increases;

2) Numerical distortion of the computed transient increases as the 0 weighting factor in the
implicit difference equations appraoches unity

3) Numerical distortion, measured by S, and P, is of the order of one percent or less for A
£ <12 hours when the transients at the upstream boundary have a time of rise (1) greater
than approximately 72 hours; this is applicable for 6 = 0.55, L = 100 miles and n = 0.03,
and increases as 0, L, and/for n increase;

4) When 7 > 96 hours, the magnitude of the numerical distortion is approximately
proportional to certain computational, upstream boundary, and channel parameters as
follows:

1S, P « 81,0, 7 1 pon LY, -l .S'"'I

5) The implicit difference equations are more stable for large A ¢ time steps and relatively
rapid transients (24 <7 <48 hours) as 8 approaches unity; however, the truncation error
becomes quite large for A 7 much greater than approximately 1 or 2 hours.
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